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Background

e Before the Deep Learning period

e Breadth-first exploration

Reinforcement
Learning

Game Theory
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Motivation - problem setting
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We live in a multi-agent world and to be successful in that world,
agents will need to /earn to take into account the agency of others
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Motivation - paradigms

Evolutionary Computation

Multi-Agent Learning

“Perhaps a thing is simple if you can describe it fully in several different ways, without
immediately knowing that you are describing the same thing” R. Feynman
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Motivation - paradigms

Individual Learners

Multi-Agent Learning| ™

Protocol Learning
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A tale, and
Call for (more) contributions
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+ 2010
Deep RL Period

special issue AlJ: If multiagent learning is the answer, what
is the question? Shoham, Powers and Grenager 2007

M. Wellman, R Vohra - Foundations of Multiagent Learning
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“U* AlphaGo

+ 2010

Training Steps

Deep RL Period

e Extension to Complex Worlds
o Real-world settings

e Algorithmics at Scale
o Old & New ideas

e Equilibrium Learning
o Nash & Correlated
o mElo, a-Rank

e Training & Evaluation
o League
o Population-based
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State Action
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+ 2010

Deep RL Period

e Extension to Complex Worlds

special issue AlJ: Multiagent learning is not the answer, it is
the question. P. Stone. 2007

o Old & New |aeas

e Equilibrium Learning
o Nash & Correlated
o mElo, a-Rank

e Training & Evaluation
o League
o Population-based



A Framework for Sequential Planning in Multi-Agent Settings

Plotr 1. Gmytrasiewicr PoiCs e sou
Prashant Doski roosIECS i £Dt

Multi-Agent Reinforcement Learning:
Independent vs. Cooperative Agents

Deportment of Computer Scince

Deep Reinforcement Learning from Self-Play in
Imperfect-Information Games

ator Dynamics as a key to

xtended Ropl 3
arning in Multi-Agent Systems

Reinforcement L

4 Bernard Manderick

Karl Tuyk *. Dries Heytems. Aun Nowe
o are et ety sl ot M L

Learning with Opponent-Learning Awareness

Richard Y. Chen

Maruan AF Shedar

Deep Decentralized Multi-task Multi-Agent Reinforcement Learning
under Partial Observability

parsl obcrabiy s commemcaen (.. e
Ay i

Lenient Multi-Agent Deep Reinforcement Learning

Palencr
ol

ABSTRACT

Ming Tan

ion and Competition with Deep
Reinforcement Learning

Art Tumpue® st Matines
Duan Kokl Ly Kuvhle  Kejan Ko
Joben Arol Jnm Are Ko Vicenic™
Cumpunsions Nesmncence Lab. st o Computr e, Uty of T
i ehemtics, FTH 7ok

Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments

Ryan Lowe” Viwo
MeGill Univensity LC Berkeley
Counterfactual Multi-Agent Policy Gradients

Gregory Farquhar
Universiy of Oxfoed. United Kingdom
ey fanquber s o

Jakob N. Focrster’
iy of Ocfod, Unted K
focrertics o




Foundational Algorithm

Multi-Agent Reinforcement Learning:
Independent vs. Cooperative Agents

f

Ming Tan

Modern and/or Deep RL Counterpart

Fictitious Play [Brown, 1951]

Independent Q-learning [Tan, 1993]
Double Oracle [McMahan et al., 2003]
Hysteretic Q-learning [Matignon et al., 2007]
Extended Replicator Dynamics [Tuyls et al., 2003]
Lenient Learning [Panait et al., 2006; Panait, Tuyls, Luke, 2008]

Replicator Dynamics [Taylor & Jonker, 1978; Smith, 1982;
Schuster & Sigmund, 1983]

Extensive-form Fictitious Play [Heinrich et al., 2015]
Neural Fictitious Self-Play [Heinrich & Silver, 2016]

Multi-agent Deep Q-Networks [Tampuu et al., 2015]
Policy-Space Response Oracles [Lanctot et al., 2017]
Recurrent Hysteretic Q-Networks [Omidshafiei et al., 2017]
Learning with Opponent-Learning Awareness [Foerster et al., 2017]

Lenient Deep Q-Networks [Palmer, Tuyls et al., 2018]

Neural Replicator Dynamics [Omidshafiei et al., 2019]
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Era lllustrations

1. RD contributing to era’s 1 and 2

2. AdA as a starting point for a (MA)RL foundation model in Era 3
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Replicator Dynamics in Fral & 2
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BNAIC 2002 / AAMAS 2003: fundamental Era

Session: Evolutionary Computation IT 16:10-17:10 22 Tuesday

Chair: William B. Langdon

The session was the last (excluding prize giving and speeches) of two happy days in Leuven. Three papers were presented:
1. Karl Tuyls, Tom Lenaerts, Katja Verbeeck, Sam Maes and Bernard Manderick, Towards a Relation Between Learning Agents and Evolutionary Dynamics, p. 315-322.
2. Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma, Improving Opponent Intelligence by Machine Learning, p. 299-306.
3. Robert E. Keller, Walter A. Kosters, Martijn van der Vaart and Martijn D. J. Witsenburg, Genetic Programming Produces Strategies for Agents in a Dynamic Environment. p. 171-178.

All three were original BNAIC papers

A selection-mutation model for q-learning in multi-agent systems
Karl Tuyls, Katja Verbeeck, Tom Lenaerts

pp 693—700 e https://doi.org/10.1145/860575.860687

Although well understood in the single-agent framework, the use of traditional reinforcement learning (RL)
algorithms in multi-agent systems (MAS) is not always justified. The feedback an agent experiences in a MAS,

ic nenalhs infliiancad ki tha athar




BNAIC 2002 / AAMAS 2003: fundamental Era

= Iy ( (33) o ( ))
f(a:) _ Z .’Ejf(iv)j : Egssurrent policy

— RD time average
e SPG current policy
— SPG time average
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Replicator Dynamics: key equation
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“Perhaps a thing is simple if you can describe it fully in several different ways, without
immediately knowing that you are describing the same thing” R. Feynman



Replicator Dynamics

* There are strong formal links between RD and MARL
= Learning dynamics corresponds to replicator dynamics

= Develop new algorithms

FAQ

LFAQ

FALA

=0
! ZJ Zk:Aik_A Yk

s — 2 [(Ay)i — 2T Ay) + zia 3 ajlin(2)
.4.'_,'!11[(2;\-;,4,*5‘4” .‘/;\.)N (ZA Aip<Aij llk)"]

‘%i:‘“ (u; — 1 u)+laz xjln(- )

G = azi[(Ay)i — 2T Ay]

da; _ _ Awi[(Ay)i—=T Ay
dt — 1—Almax;(Ay)—aT Ay]

o



o

Neural Replicator Dynamics

A Unifying Perspective on Replicator Dynamics and Policy Gradient

-
Prior
: works
1
1
______ | A
. Policy Gradient
Connecting between RD and
Multiagent RL methods (PG)

[1] Borgers & Sarin Learning through
Reinforcement and Replicator
Dynamics, 1997.

[2] Tuyls et al. A Selection-Mutation
Model for Q-learning in MAS, 2003.

[3] Bloembergen et al. Evolutionary

Dynamics of Multi-Agent Learning:
A Survey, 2015.

L i —

Replicator
Dynamics (RD)

Parameterized
Update Rule

Neural Replicator
Dynamics (NeuRD)

Online Learning

Scaling to the DeepRL period
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https://www.sciencedirect.com/science/article/pii/S002205319792319X
https://www.sciencedirect.com/science/article/pii/S002205319792319X
https://www.sciencedirect.com/science/article/pii/S002205319792319X
https://dl.acm.org/citation.cfm?id=860687
https://dl.acm.org/citation.cfm?id=860687
https://www.jair.org/index.php/jair/article/view/10952
https://www.jair.org/index.php/jair/article/view/10952
https://www.jair.org/index.php/jair/article/view/10952

RD in DeepRL era - Why Stratego?

m Marshall: loses when attacked by Spy

u General

Barrage/Duel Classic

M Colonel
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IEI g Mi def Bomb
) i £ iner: defuses Bom
8/10 pieces each 40 pieces each

Scout: can make long moves
Spy: wins when attacking Marshall
Bomb: defused by Miner

Flag: game over when captured
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Convergence to Nash equilibrium

Initial reward transform policy:
T0.reg(H) = 0.999, 75 .0, (T) = 0.001
T3 reg(H) = 0.999, 75 ... (T') = 0.001

Scale parameter:

n=0.2

Stage 0:

Reward transform : o o
i — (gt a8 — pl Tz(al)‘ ] m
re(a) =r'(a’,a™") —nlog (Wé,reg(a’)) + nlog (Wo}eg(a_i)

Dynamics converges to : 71(.fix
Update : 1 reg < 710, fix

Stage 1:

Reward transform :

ri(a) =r'(a’,a") — nlog ( iﬂi(ai) ) +nlog (W)

FO,reg(ai) TrO,reg(a’ii)

Dynamics converges to : 71,fix
Update . 7T2’/r'eg < 7T1,fw;
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Scale the idea to Era 2
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Evaluation on Bots and Humans

50 games played in April 2022

) o ) Opponent Number of Games ’ Wins Draws Losses

DeepNash achieved 84% win rate Srobe 30 100.0% 00%  0.0%
Master of the Flag 30 100.0% 0.0%  0.0%

Demon of Ignorance 800 97.1% 1.8% 1.1%

Yielded 3rd rank in Classic Asmodeus 800 99.7%  0.0%  0.3%
Celsius 800 982% 0.0% 1.8%

Stratego Challenge Ranking 2022 Celsius1.1 800 97.9% 0.0% 2.1%
PeternLewis 800 99.9% 0.0% 0.1%

Vixen 800 100.0% 0.0%  0.0%

Yielded 3rd rank in All-Time
Classic Stratego Ranking (since 2002)
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Material vs Information trade-off
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- none of its pieces are revealed and only two
pieces moved.

- While Blue (DeepNash) is behind a 7 and 8
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- As aresult DeepNash assesses its chance
of winning to be still around 70%

- Blue indeed won this match.
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Example match 1

o

99999

44444

Human opponent

DeepNash




, value=0.620

Move 1121: BLUE's turn

o






https://docs.google.com/file/d/1_yzlXW9HzAuMmNw_hnurUgj9Z__kf9J5/preview

‘The level of play of DeepNash surprised me. | had never seen or heard of an

artificial Stratego player that came close to the level needed to win a match against
an experienced human player, but after playing against DeepNash myself | was not
surprised by the top-3 ranking it later on achieved on the Gravon internet platform. |

would expect this agent to also do very well if it participated in the World
Championship’

- Vincent de Boer

O



Replicator Dynamics in the FM Era?

1. Equilibrate when foundation models meet/understanding implicit agent modelling
Develop new FM multiagent RL algorithms based on regularization.

Human in the loop and alignment.

> W N

RD for developing auto-curricula (e.g. see AdA)/gamify language, image generation

Blotto(10,3) Rock-Paper-Scissors
Blotto(10,5)
Blotto(10,4) Disc game
Blotto(5,3) Elo game (noise=1.0)
Blotto(5,4)
Blotto(5,5) Kuhn Poker Navigating the landscape of multiplayer games
Misere TicTiacToe Random Game of Skill Shayegan Omidshafiei £, Karl Tuyls, Wojciech M. Czarnecki, Francisco C. Santos, Mark Rowland,
3-move parity game Jerome Connor, Daniel Hennes, Paul Muller, Julien Pérolat, Bart De Vylder, Audrunas Gruslys & Rémi
Hex (board size=3) Elo game (noise=0.5) Munos
Tic-Tac-Toe
g : AlphaStar league Nature Communications 11, Article number: 5603 (2020) | Cite this article
Misére Hex (board size=3)
Quoridor (board size=3) Elo game (noise=0.1)
Go (board size=3)
Quoridor (board size=4) Normal Bernoulli game

Connect Four S
Elo game (noise=0.0)
Misére Connect Four
Go (board size=4) Transitive game



Replicator Dynamics in the FM Era?

1. Equilibrate when foundation models meet/understanding implicit agent modelling
Develop new FM multiagent RL algorithms based on regularization.

Human in the loop and alignment.

> W N

RD for developing auto-curricula (e.g. see AdA)/gamify language, image generation

Blotto(10,3) Rock-Paper-Scissors
Blotto(10,5) )
Blotto(10,4) Disc game
Blotto(5,3) Elo game (noise=1.0)
Blotto(5,4) - - %
Bl Kuhn Poker Navigating the landscape of multiplayer games
Misére Tic-Tac-Toe Random Baime ESkN Shayegan Omidshafiei &, Karl Tuyls, Wojciech M. Czarnecki, Francisco C. Santos, Mark Rowland
3-move parity game Jerome Connor, Daniel Hennes, Paul Muller, Julien Pérolat, Bart De Vylder, Audrunas Gruslys & Rémi
Hex (board size=3) Munos
Tic-Tac-Toe L . i . .
AlphaStar league Nature Communications 11, Article number: 5603 (2020) | Cite this article

Misére Hex (board size=3)

Quoridor (board size=3) Elo game (noise=0.1)
Go (board size=3)
Quorid jor (board size=4) Normal Bernoulli game

Connect Four & %
Elo game (noise=0.0)
Misére Connec t Four
Go (board size=4) ransitive game
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Adaptive Agent as a basis for a MA
Foundation model
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Foundation Models

">} Stable Diffusion
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GPT-4

Foundation models are typically characterised by:

e Rapid (few-shot) adaptation across a wide range of tasks.
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Vision for an RL-based Foundation Model

Build agents capable of increasingly rapid, flexible and
strategic adaptation on a usefully open-ended task space.

gengr_;lli‘s?tion few-shot in-context sample efficient RL tr::,g‘rl:g
i fine-tuni
(XLand) adaptation (fine-tuning) scratch

AdA has focused on looking for
Pareto improvement in this part
of the spectrum

O



This results reel shows the learned
behaviours of a single agent, AdA.

The following, hand-crafted tasks are used
only to evaluate the agent. AdA has never
seen them before, having been trained on a
wide range of procedural tasks.

No training is happening during these videos.
The agent is making decisions in real time
based on its dynamic internal memory.
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Adaptation Challenges

Wl'()llg Pail' Disappears Experimentation, Irreversibility

AdA’s goal is to hold a black
cube, which does not exist
among the initial objects.

Goal ® Lo ‘
&

Initial @ «1 (= ‘ x1
Object
jeC S ‘ A ‘ p ‘ .

Rules 1 ‘TOUCHL —)%/‘
2 ‘TOUCHL—)//

&  Allrules are hidden from the player

There are two rules, which are
hidden from AdA. It needs to
identify the correct world state
which triggers the first, helpful,
rule and not the second one,
which is a dead end.




Wrong Pair Disappears

AdA is embodied
in this blue avatar. |




Wrong Pair Disappears

AdA sees the

world from this
first-person
perspective

(RGB pixels).




Wrong Pair Disappears

F = —~
&/

AdA observes :Tyer Goal
its goal and if it - S Hoo @ ]
is currently
satisfied.
Here: hold the

. black cube.

y




Wrong Pair Disappears

Player Goal

I v @ |

® &) thereisno

The only
QQ problem:




Rules P1

A0S0 O = Wrong Pair Disappears

Player Goal

[ S oo® |

1 ‘TOUCH(/—)%/‘

This is where Rules come in.

In this task, touching the black pyramid
fLwith a yellow sphere creates a black cube.




P1

TOUCHING k_, - ‘Z‘ (53
Toucking (_ - A/{ @ [\

Wrong Pair Disappears

9 ‘TOUCH(/—)//

Touching the purple pyramid with a
yellow sphere destroys both objects.

Triggering this dead end rule would
make the task impossible to solve.

Player Goal

L

HoLD (@




=0 A58 - Wrong Pair Disappears
2§ rovcuns O 474 a

Player Goal

[ @ |

Trial1/3
O —
Time Remaining: 7.73

AdA has 20 seconds to
solve this task. At the end
of such a trial we reset the
world but not AdA’s
memory.
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Results reel



http://www.youtube.com/watch?v=U93bUQ1roiw&t=182

Wl'OIlg pair Disappears FOr TWO I\r(:':)\l/;‘”s':l():‘l|ll|;lllBIVISIon of Labour

Similar in nature to the single-
agent ‘Wrong pair disappears’
task.

7~
Goal ® o ‘
&

nitial @ <1 (1 @~
Objects
‘ x1 ‘ x1 ‘ x1
Rules 1 ‘ TOUCH L - %/‘
2 ‘ TOUCH L/ - //

& Allrules are hidden from both players

But in this multi-agent task
variant, two agents share the
same, cooperative, goal.

Both agents act independently
and use the same trained AdA

policy.
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http://www.youtube.com/watch?v=U93bUQ1roiw&t=259

Large-scale RL* on a vast set of tasks

Random sample

Passed evaluation

XLand task pool
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Select the tasks
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Evaluate the tasks
(compute the fitness)

RL update

Distillation update

Training set
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m
Add them to - 0
the training set
AN
o (] O
|
a
-
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TL;DR conclusion

Motivation

Current RL agents cannot learn
from exploration and feedback
on human timescales

This is a crucial skill for
human-facing systems, and a
major factor in the success of
current foundation models.

Results

Adaptive Agent (AdA) adapts to
unknown environment dynamics
in minutes.

AdA performs exploration,
refinement and exploitation on
the fly.

Human-Timescale Adaptation in an Open-Ended Task Space

Methods

A vast 3D embodied task
space.

Curriculum co-adaptation of
agent and environment.

Large scale meta-RL with
Transformer models.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister,
Vibhavari Dasagi, Lucy Gonzalez, Karol Gregor, Edward Hughes, Sheleem Kashem, Maria Loks-Thompson, Hannah Openshaw, Jack Parker-Holder, Shreya Pathak, Nicolas Perez-Nieves,
Nemanja Rakicevic, Tim Rocktdschel, Yannick Schroecker, Jakub Sygnowski, Karl Tuyls, Sarah York, Alexander Zacherl, Lei Zhang
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Conclusion
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Concluding: work in era’s coming together

multi-modal data

Foundatidn Model

Challenging and exciting times ahead of us, with in parallel:
o  Fundamentals period
o Deep-RL period
o and Foundation Model period

Fundamentals: develop equilibrium and alignment concepts
for FM

Deep-RL: improve algorithmics and autocurricula at scale

Foundation Models: development of MARL foundation
agents with input from era 1and 2

O



Concluding: RD as an example

RD describing various MARL algorithms and
serving as a basis for designing new algorithms

We have achieved a human-expert level agent in
Stratego with model-free RL/RD approach
o Directly converges to Nash in imperfect
information game
o Generates unpredictable behavior

F-MARL: RD for equilibration, alignment, auto
curriculum

O



Concluding: two books

Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches

www.marl-book.com

s oh

Stefano V. Albrecht Filippos Christianos Lukas Schafer

Updates at e

Second (short) book in the works, complementary to the book above with P. Stone, G.
Chalkiadakis and myself

O
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Thanks!
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